pullback d-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains
Authors
abstract
at present paper, we establish the existence of pullback $mathcal{d}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $l^2(mathbb{r}^n)times l^2(mathbb{r}^n)$. in order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{d}$-absorbing set, is pullback $widehat{d}_0$-asymptotically compact.
similar resources
Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains
At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.
full textPullback attractors for non-autonomous reaction-diffusion equations in Lp
We study the long time behavior of solutions of the non-autonomous Reaction-Diffusion equation defined on the entire space Rn when external terms are unbounded in a phase space. The existence of a pullback global attractor for the equation is established in L(R) and H(R), respectively. The pullback asymptotic compactness of solutions is proved by using uniform a priori estimates on the tails of...
full textPullback attractors of nonautonomous reaction–diffusion equations
In this paper, firstly we introduce the concept of norm-to-weak continuous cocycle in Banach space and give a technical method to verify this kind of continuity, then we obtain some abstract results for the existence of pullback attractors about this kind of cocycle, using the measure of noncompactness. As an application, we prove the existence of pullback attractors in H 1 0 of the cocycle ass...
full textAttractors for Partly Dissipative Reaction Diffusion SYstems in R^n
In this paper, we study the asymptotic behavior of solutions for the partly dissipative reaction diffusion equations in ޒ n. We prove the asymptotic compact-ness of the solutions and then establish the existence of the global attractor in 2 Ž n .
full textPullback Attractors for Nonclassical Diffusion Equations in Noncylindrical Domains
The existence and uniqueness of a variational solution are proved for the following nonautonomous nonclassical diffusion equation ut − εΔut − Δu f u g x, t , ε ∈ 0, 1 , in a noncylindrical domain with homogeneous Dirichlet boundary conditions, under the assumption that the spatial domains are bounded and increase with time. Moreover, the nonautonomous dynamical system generated by this class of...
full textPullback Attractors for Reaction-diffusion Equations in Some Unbounded Domains with an H-valued Non-autonomous Forcing Term and without Uniqueness of Solutions
The existence of a pullback attractor for a reaction-diffusion equations in an unbounded domain containing a non-autonomous forcing term taking values in the space H, and with a continuous nonlinearity which does not ensure uniqueness of solutions, is proved in this paper. The theory of set-valued non-autonomous dynamical systems is applied to the problem. Dedicated to Peter E. Kloeden on his 6...
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyجلد ۴۳، شماره ۲، صفحات ۵۱۵-۵۳۴
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023